1. Write the first nine rows of Pascal's Triangle:

Do a Google search to find similar versions of
Pascal's triangle.
Take a screen shot and save it for reference.

2. $(a+b)^{2} \rightarrow$ we know how to use FOIL to multiply binomials

$$
=(a+b)(a+b)=a^{2}+2 a b+b^{2}
$$

compare

$a b$
$+a b$

$$
=\underbrace{1 a^{2}+2 a b+1 b^{2}}_{\text {sown }} \text { coefficients }
$$

3.

$$
\begin{aligned}
& (x+y)^{6} \text {-use row } 7 \\
& \text { exponents are decreasing for } x
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 4. }(a-b)^{4} & \text { 5. }(2 a+\sqrt{5})^{6} \\
\text { 6. }\left(a^{2}-4 b\right)^{5} & \text { 7. }(a b-3 c)^{4}
\end{array}
$$

For \#4-7 and beyond: USE PARENTHESES WHEN EXPANDING!!

Set up problem using given values, then solve and combine constant numbers into one coefficient per term.

No decimals!!!

see hints on next few slides \downarrow
4. $(a-b)^{4 \leftarrow \text { see row } 5}$ (use $14 \begin{array}{lllll}4 & 4 & 1)\end{array}$ $\stackrel{\text { set ap }}{=} 1^{4}+4 a^{3}(-b)^{1}+6 a^{2}(-b)^{2}+4 a(-b)^{3}+1(-b)^{4}$ simplify

5. $(2 a+\sqrt{5})^{6}$

Problem \#5 can be solved like \#3 and \#4 in a horizontal manner OR the terms can be organized vertically using a chart like the one listed below. Both techniques are shown on the next 2 slides. Use whichever method makes the most sense to you!

5. $(2 a+\sqrt{5})^{6}=64 a^{6}+192 \sqrt{5} a^{5}+1200 a^{4}+$ now fin sh Simplify
5. $(2 a+\sqrt{5})^{6}$ or solve horizontally as in \# 3,4 set up

$$
\begin{equation*}
=1(2 a)^{2}+6(2 a)^{5}(\sqrt{5})^{1}+15(2 a)^{4}(\sqrt{5})^{2}+20(2 a)^{3}(\sqrt{5})^{3}+\ldots \tag{rete}
\end{equation*}
$$

evaluate parentheses

$$
\begin{aligned}
& \text { valuate parentheses } \\
& =64 a^{6}+6 \cdot 32 a^{5} \cdot \sqrt{5}+15 \cdot 16 a^{4} \cdot 5+20 \cdot 8 a^{3} \cdot 5 \sqrt{5} \\
& \text { now simplify }
\end{aligned}
$$

how simplify
by combining numerical values
no decimal!

$$
\sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5}
$$

$$
=64 a^{6}+192 \sqrt{5} a^{5}+1200 a^{4}+\cdots
$$

$$
=5 \sqrt{5}
$$

(same values as previous slide, just organized in a different way l)

Don’t forget to check your answers!!

CHECK ANSWERS:

$$
\begin{aligned}
& 56 x^{5} y^{3} \quad 2940 x^{2} y^{4} \quad-340,200 \sqrt{5} x^{3} \quad a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \\
& x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+y^{6} \\
& a^{10}-20 a^{8} b+160 a^{6} b^{2}-640 a^{4} b^{3}+1280 a^{2} b^{4}-1024 b^{5} \\
& a^{4} b^{4}-12 a^{3} b^{3} c+54 a^{2} b^{2} c^{2}-108 a b c^{3}+81 c^{4} \quad a^{2}+2 a b+b^{2} \\
& 64 a^{6}+192 \sqrt{5} a^{5}+1200 a^{4}+800 \sqrt{5} a^{3}+1500 a^{2}+300 \sqrt{5} a+125
\end{aligned}
$$

8. Find the 4 th term of $(x+y)^{8 \leftarrow \text { row } 9}$ Just find this \uparrow

Doit solve

9. Find the 6 th term of $(x-3 \sqrt{5})^{8}$

$$
=56(x)^{3}(-3 \sqrt{5})^{5}<3+5=8
$$

$$
\begin{gathered}
\text { row } \\
q
\end{gathered}
$$

$$
=56 \cdot x^{3} \cdot-3^{5} \cdot \sqrt{5}^{5}
$$

$$
\text { low } \quad 1 \quad 1
$$

$$
=56 \cdot x^{3}-243 \cdot 25 \sqrt{5}{ }^{\text {mow }} 1_{3} \frac{1}{1}
$$

$$
=-340,200 \sqrt{5} x^{3} \operatorname{lows} \quad 1 \quad 4 \quad 6 \quad 1
$$

10. Find the 5 th term of $(2 x-\sqrt{7} y)^{6}$
11. Find the 7th term of $(-3 x+2 y)^{7}$
12. Find the 4 th term of $(-4 x-\sqrt{5})^{6}$

